教授
当前位置: 首页 - 师资队伍 - 防水材料与工程系 - 教授 - 正文

王迎斌

作者:王迎斌    发布:2023-03-06 14:15    点击量:

姓名:王迎斌

出生年月198511

职称:教授硕士生导师)

个人简介:博士2015毕业于武汉理工大学建筑材料与工程专业,武汉英才计划培育支持专项科技创新领域人才,兼任中国建筑学会建筑防水学术委员会委员、中国硅酸盐学会固废分会青年委员会委员等职。主持国家自然科学基金、十三五国家重点研发计划项目子课题、湖北省重点研发计划等国家和省部级科研项目10余项。以第一或通讯作者在Cement Concrete Composites, Chemical Engineering Journal, Construction and Building Materials, 等国际知名期刊发表论文50余篇,其中SCI收录30余篇、中科院一区20篇;出版十四五规划教材1部;参编行业及地方标准2项;以第一发明人获授权发明专利46件,获湖北省科技进步一等奖及福建省科技进步三等奖各1Cement Concrete Composites, Construction and Building MaterialsJournal of Building Materials,材料导报等期刊审稿人。

主讲课程:土木工程材料高性能混凝土

研究方向:固废建材化利用,功能建筑材料,建筑材料耐久性

科研项目:

1国家重点研发计划项目子课题, 2019YFC1907104-03, 建筑用碱激发混凝土材料及应用技术, 2020.1-2022.12, 102万元, 主持

2国家自然科学基金青年基金项目,52008158, 基于微纳米潜热存储胶囊的水泥基材料设计及性能调控机制, 2021.1-2023.12, 30万元,主持

3、湖北省重点研发计划项目,2021BGD014, 工业固废资源化高值化利用技术中试研究, 2021.10-2023.12100万,主持

4、湖北省自然科学基金, 2016CFB353, 水泥基材料碳硫硅钙石型硫酸盐侵蚀的机理研究, 2017.1-2018.12, 3万元, 主持

5湖北省教育厅研发项目, B2016048, 水泥基材料碳硫硅钙石型硫酸盐侵蚀破坏的损伤机制, 2016.1-2018.12, 主持

6、国家重点实验室基金项目, SYSJJ2020-18, 纳米封装储热材料在水泥基材料中的作用机制研究, 2020.1-2021.12, 5万元, 主持

7广东省滨海土木工程耐久性重点实验室项目, GDDCE17-7, 碳酸盐与硫酸盐协同作用下混凝土劣化机理及防治措施, 2017.1-2019.12, 2, 主持

部分代表性科研成果:

1)科研论文

1. Wang YB, Xiang ZD, Su Y, et al. The carbon activation of electric furnace ferronickel slag and its utilization in cement-based materials. Chemical Engineering Journal, 496 (2024) 154389. 中科院1, IF=13.4

2. Wang YB, Li XH, Miao WJ, et al. The carbon mineralization behavior of copper slag and its impact on pozzolanic reactivity. Cement and Concrete Composites, 2025, 157: 105899. 中科院1, IF=11.2

3. Wang YB, Hu Y, He X, et al. Hydration and compressive strength of supersulfated cement with low-activity high alumina ferronickel slag. Cement and Concrete Composites, 2023, 136: 104892. 中科院1, IF=11.2

4. Wang YB, Xu L, He X, et al. Hydration and rheology of activated ultra-fine ground granulated blast furnace slag with carbide slag and anhydrous phosphogypsum. Cement and Concrete Composites, 2022, 133: 104727. 中科院1, 11.2

5. Wang YB, Yuan ZY, Yang J, et al. Utilization of ultra-fine copper slag to prepare eco-friendly ultrahigh performance concrete by replacing silica fume. Construction and Building Materials, 2023, 406: 133476. 中科院1, IF=7.4

6. Wang YB, Hu Y, Yang J, et al. Performance of cement-based materials incorporating ultra-fine copper slag. Construction and Building Materials, 2023, 402: 132949. 中科院1, IF=7.4

7. Wang YB, Wang JF, Wu YJ, et al. Preparation of sustainable ultra-high performance concrete (UHPC) with ultra-fine glass powder as multi-dimensional substitute material. Construction and Building Materials, 2023, 401: 132857. 中科院1, IF=7.4

8. Wang YB, Wang W, Ma M, et al. Microstructure and mechanical properties of activated high-alumina ferronickel slag with carbide slag and alkaline salts. Journal of Building Engineering, 2022, 49: 104046. 中科院2, IF=6.7

9. Wang YB, Li Q, Miao W, et al. The thermal performances of cement-based materials with different types of microencapsulated phase change materials. Construction and Building Materials, 2022, 345: 128388. 中科院1, IF=7.4

10. Wang YB, Li Y, Su Y, et al. Preparation of waste glass powder by different grinding methods and its utilization in cement-based materials. Advanced Powder Technology, 2022, 33(8): 103690. 中科院2, IF=4.2

11Wang YB, Li J , He X , et al. Effects of wet-grinded superfine waste glass on the fresh properties and reaction characteristic of cement pastes[J]. Construction and Building Materials, 2020, 247:118593. 中科院1, IF=7.4

12Wang YB, He X , Su Y , et al.Mechanical and microstructure development of portland cement modified with micro-encapsulated phase change materials [J]. Construction and Building Materials, 2021,304. 124652. 中科院1, IF=7.4

13Wang YB, He X , Su Y , et al.Preparation and characterizations of hydroxyapatite microcapsule phase change materials for potential building materials[J]. Construction and Building Materials, 2021,297. 1234567. 中科院1, IF=7.4

14Wang YB, He X , Su Y , et al. Efficiency of wet-grinding on the mechano-chemical activation of granulated blast furnace slag (GBFS)[J]. Construction and Building Materials, 2019, 199(FEB.28):185-193. 中科院1, IF=7.4

15Wang YB, Miao W , He X , et al. Stearic-Capric acid /porous nanoceramics as a novel form-stable composite phase change material (FSPCM) for thermal energy storage[J]. Materials Letters, 2018. 中科院3, IF=2.7

16Wang YB, He X , Su Y , et al. Self-hydration characteristics of ground granulated blast-furnace slag (GGBFS) by wet-grinding treatment[J]. Construction & Building Materials, 2018, 167:96-105. 中科院1, IF=7.4

17Wang YB, He X , Su Y , et al. Effect of aluminium phases on thaumasite formation in cement slurries containing limestone powder[J]. Magazine of Concrete Research, 2017:1-7. 中科院4, IF=2.1

18Wang YB, He X , Su Y , et al. Effect of Silica Fume on the Thaumasite Form of Sulfate Attack on Cement-based Materials[J]. Journal of Wuhan University of Technology(Materials Science), 2017. 中科院4, IF=1.3

19Ma, Baoguo; Wang, Yingbin*, Fu. The effect of limestone type and nanosilica on the durability of limestone cement mortars.[J]. Magazine of Concrete Research, 2014. 中科院4, IF=2.1

2)发明专利

1、基于叔碳酸乙烯酯共聚物改性透水混凝土, 2022108544268(第一发明人,授权)

2、一种高钙固废碳化制备轻质高强泡沫混凝土的制备方法, 2023101940634(第一发明人,授权)

3、一种利用碳化铜渣制备耐腐蚀管片的材料的方法, 2023102031164(第一发明人,授权)

4、一种利用碳化钙基硅酸盐固废制备绿色硅酸钙板的方法, 2023102270964第一发明人,授权)

5、一种蒸压加气混凝土废料碳化再利用方法,  202310194055X(第一发明人,授权)

6、碱激发镍渣、盐泥去重金属免烧陶粒, 2022108351138(第一发明人,授权

7、电炉镍渣碳固碳及其在混凝土中的高值化利用方法, 2022116116197(第一发明人,授权

8、以固废前驱体低温制备高长径比防辐射莫来石晶须的方法, 2022109270778(第一发明人,授权

9、一种有机-无机复合改性制备低温早强型混凝土的方法, 2022104143812(第一发明人,授权

10、一种利用瓷砖废料制备水下不分散混凝土的方法, 2022100614370(第一发明人,授权

11、一种复合碱激发锂渣低温早强混凝土及其制备方法, 202210064856X(第一发明人,授权

12、一种隔热耐磨碱活化修补砂浆及其制备方法, 202210445408.4(第一发明人,授权

13、一种掺光纤维废泥碱激发磷渣地质聚合物的制备方法, 202011570187.0(第一发明人,授权

14、一种弱碱激发镍渣高强混凝土的制备方法, 202011570175.8(第一发明人,授权

15、一种低水化热绿色自流平混凝土的制备方法, 202010983392.3(第一发明人,授权

学生指导:

1、第七届互联网+大学生创新创业大赛(2021国家铜奖指导老师

2、第十挑战杯大学生创业计划竞赛湖北省银奖第一指导老师);

3、第十挑战杯大学生课外学术科技作品湖北省铜奖第一指导老师);

4、每年指导指导硕士生获国家奖学金等荣誉称号。

 

***研究生招生***

招收专业:土木工程(学术型、专业型),防水材料与工程

邮箱:wybjob@hbut.edu.cn   QQ275331986